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RNA atlas of human bacterial pathogens uncovers
stress dynamics linked to infection
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Bacterial processes necessary for adaption to stressful host environments are potential tar-

gets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human

bacterial pathogens grown under 11 stress conditions mimicking human host environments.

The potential relevance of the in vitro stress conditions and responses is supported by

comparisons with available in vivo transcriptomes of clinically important pathogens. Calcu-

lation of a probability score enables comparative cross-microbial analyses of the stress

responses, revealing common and unique regulatory responses to different stresses, as well

as overlapping processes participating in different stress responses. We identify conserved

and species-specific ‘universal stress responders’, that is, genes showing altered expression

in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the

responses. The data are collected in a freely available, interactive online resource

(PATHOgenex).
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Bacterial pathogens with different genetic and physiological
features share capacity to sense and respond to external
changes in the host by regulating their transcriptome. The

responses are often complex, and synergistic regulation of reg-
ulatory networks can be pivotal in sensing and adapting different
colonization niches during different phases of infection1–4. For
many pathogens, the first environmental change upon infection
of mammalian hosts is altered temperature. Bacteria sense
changes in temperature through various sensory mechanisms
triggering transcriptional changes for adaptation. The heat-shock
response that aid in maintaining protein and membrane home-
ostasis protects bacteria from sudden temperature change5. Low
pH in the gastrointestinal tract, genital tract, dental plaque, skin,
and in phagosomes represents additional stresses6. Helicobacter
pylori are successful in adaptation to acidic environments capable
to colonize the stomach, which mostly relies on enzymatic
activities of proteins such as urease leading to the formation of
ammonia neutralizing gastric acid7. Another agent affecting
enteric bacteria is bile salts produced in the liver and secreted to
the gastrointestinal tract, as well as secondary bile salts produced
by the microbial flora8. Salmonella enterica serovar Typhi can
resist very high bile concentrations and can persist in gall
bladder9, where it forms biofilm on gallstones10. The hyper-
osmotic nature of blood and gastrointestinal tract can be harsh
for certain pathogens, in some cases also inducing expression of
virulence genes, such as in H. pylori and Vibrio cholerae11,12.
Limited nutrient, iron, and oxygen levels are other stresses that
pathogens encounter in different nishes of the host and have to
adapt to for survival13. While free sugars are available in the
blood, sugar levels can be limited in other infection sites such as
respiratory tracts. Here, extracellular glycan hydrolysis is a
common strategy for many bacterial pathogens to acquire
nutrients14. Amino acid starvation can trigger the stringent
reponse, mediated by guanosine tetra/pentaphosphate ((p)-
ppGpp), which in turn induces stress responses for adaption to
nutrient limitation. Iron is insoluble in the aerobic environment
and neutral pH of serum, but invading bacteria has developed
numerous mechanisms to acquire iron. One acquisition
mechanism is the usage of siderophores, molecules that sequester
iron and import its cargo to the bacteria through specific trans-
porters such as the TonB/ExbB/ExbD transport system15. Besides
natural environments of different tissues, the recruitment of
immune cells, such as neutrophils and macrophages contributes
to environmental changes. When activated, these cells produce
toxic oxidative and nitrosative substances that bacteria have to
cope with. The toxic substances are sensed by regulatory proteins
such as OxyR, DksA, SsrB, OhrR, MosR, SarZ, and MgtA in
different pathogens16. The activity of the phagocytic immune cells
also consumes oxygen and contributes to local hypoxia at the
infection site17. However, despite many known adaptation
mechanisms in diverse human pathogens, there are still
mechanisms and synergies between mechanisms to be identified.
In addition, other parts remaining to be elucidated are the
assisting interconnected regulatory networks including global and
specific regulators, which can be complex involving both species-
specific and shared mechanisms.

Comparative genomics studies have enabled accumulated
knowledge of the diversity of bacterial pathogens. However, the
question, how and when different gene products are employed by
diverse pathogens to cope with the same stresses encountered in
the human host, remains to be answered. To complement com-
parative genomics studies and answer those questions, global
gene expression profiling of diverse bacterial pathogens under
host-related conditions is desired. There are some resources
available today covering certain bacterial species that provide
some information. One is the comprehensive suite of infection-

relevant conditions described for S. enterica where the tran-
scriptomes are cataloged in a database18. Another valuable
resource for retrieving information of regulatory networks asso-
ciated with host cell invasion is a collection of differential
expression profiles of Salmonella mutated in genes encoding
selected transcription factors19. Differential gene expression
profiles of H. pylori under five different conditions including
acidic stress and growth in contact with human cell lines are also
avaliable20. Furthermore, the BACTOME database with sta-
tionary phase expression profiles of 96 Pseudomonas aeruginosa
clinical isolates allows linkages of phenotype, genotype, and
transcriptome21. While these resources provide important infor-
mation about gene expression and regulation under different
conditions in specific bacterial pathogens, there is no resource
providing information of diverse bacterial pathogens exposed to
similar host-related conditions.

Here we analyzed global expression profiles of 32 different
bacterial pathogens under 11 infection-relevant stress conditions.
Data were collected in an interactive RNA atlas, named
PATHOgenex (www.pathogenex.org), freely available to the
research community. Datasets were used to uncover similarities
and discrepancies in different stress responses across different
groups of bacteria. This was made possible by grouping genes
from different bacteria according to function and homology and
computing a score showing probability to be regulated in a par-
ticular environment. These scores also allowed identifation of
conserved and species-specific universal stress responders (USRs),
which are genes showing altered expression in multiple stress
conditions. Conserved USRs contain many known antimicrobial
targets and can potentially serve as a source for studies aiming for
novel targets. We also show that non-coding RNAs are differ-
entially regulated in response to stressful environments and that
novel ncRNAs can be explored from the dataset.

Results
Cataloging stress response of cross-microbial human patho-
gens. The majority of bacteria in the PATHOgenex RNA atlas
represent pathogens causing worldwide health problems. Most
strains are commonly used in the microbial research community
and are diverse in terms of Gram staining, phylogeny, and oxygen
requirement (Fig. 1a). We exposed 32 bacterial pathogens to 10
infection-relevant stress conditions. Also species-specific in vitro
virulence inducing conditions were included if described in lit-
erature. As control for differential expression analyses, we utilized
unexposed, exponentially grown bacteria (Fig. 1a, Table 1, Sup-
plementary Data 1, and Supplementary Fig. 1a). We obtained an
average of 12.2 million reads for each rRNA-depleted barcoded
library, which far exceeds the 2–3 million reads considered suf-
ficient to determine differentially expressed genes from bacteria
with high significance22 (Supplementary Data 2). Hierarchical
clustering of expression profiles clustered replicates of the same
sample together, indicating robust measurements of gene
expression in all conditions and strains (Supplementary Fig. 1b).
To asses quality of read mappings, also transcript length coverage
was evaluated for each strain using the replicate with the lowest
number of total reads. This showed accurate distribution of reads
along the transcript length even in the poorest sequencing
libraries, indicating good mapping quality (Supplementary Fig. 2).

Differential expression analysis showed that all bacteria
dynamically responded to the stresses by regulating 62–90% of
their genes in at least one condition (Fig. 1b). The highest fraction
of regulated genes was measured under hypoxia, nutritional
downshift, and stationary phase (Fig. 1c). Accuracy of the
analyses was verified by differential expression of genes expected
to be regulated under certain stress conditions (Supplementary
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Fig. 3). The bfd gene encoding bacterioferritin ferroxidase, shown
to be upregulated under iron starvation23,24, was upregulated
under low iron condition in all strains harboring the gene.
Similarly, proW encoding a permease that is part of the
osmotically inducible ProU ABC transporter system25, was

upregulated in many of the tested strains under osmotic stress.
Further, dps encoding DNA protection during starvation protein,
shown to be positively regulated in an RpoS-dependent manner
during stationary phase26, was upregulated in many strains
during stationary phase. The observed downregulation in E. coli
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Fig. 1 Stress responses of cross-microbial human pathogens. a Phylogenetic clustering of bacterial species included in the study together with a
schematic illustration of the experimental setup for 11 infection-related stress exposures (see also Table 1) and RNA-seq library preparation with RNAtag-
Seq allowing multiple samples (36 in this study) per library used for obtaining 1122 transcriptomes deposited in the PATHOgenex RNA atlas. Phylogenetic
orders, Gram staining groups, and oxygen dependency are indicated by color. b Proportion of genes differentially regulated in at least one of the conditions
for each species. The linked heat maps show proportions of regulated genes for each stress condition. The scales to the right show the span from zero
(white) to the highest (green) proportion (%) of regulated genes in the stress condition with the highest percentage of regulated genes. Heat map squares
marked with a cross indicate that RNA-seq was not performed for that specific condition. c Dot plot showing the percentages of genes differentially
regulated in each condition for all included species, d for Gram-negative and -positive bacteria, e for bacterial groups with aerobic and microaerophilic
growth, f for three main phylogenetical orders included in this study. n= 32 species were examined for As, Li, Nd, Ns, Oss, and Oxs; n= 26 were examined
for Bs; n= 31 were examined for Hyp; n= 31 were examined for Sp; n= 30 were examined for Vic in c. n= 21 Gram-negative and n= 8 Gram-positive; n=
17 aerobic and n= 15 microaerophilic bacterial species were examined in d and e, respectively. n= 4, n= 14, and n= 8 bacterial species from
Betaproteobacteria, Gammaprotobacteria, and Bacilli were examined in e. Data are presented as mean values in c and as mean values ± SD in d, e, and f. The
significance between the groups in d, e, and f was calculated with two-tailed Multiple t-test using Holm-Sidak method by Prism Graphpad version 8.2.0. **
indicates p-value = 0.0033. Source data are provided as a Source Data file.
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(UPEC) and some other species such as Streptococcus pyogenes
could be due to OxyR mediated upregulation in exponential
phase27. As expected, cstA, encoding carbon starvation protein28,
was induced under nutritional downshift in the majority of
strains harboring the gene. We also observed upregulation of cstA
paralogues in strains harboring these. The observed upregulation
of ahpC, encoding alkyl hydroperoxide reductase subunit during
oxidative stress, is in accordance with what is known for many
bacteria29. This gene was downregulated in H. pylori and not
regulated for F. tularensis and Haemophilus influenzae, suggesting
possible involvement of other hydrogen peroxidases. The gene
encoding the heat shock protein GroL was upregulated in
majority of the strains under temperature stress. Upregulation of
hmp, encoding flavohaemoglobin known to be induced under
nitrosative stress30, was here observed in the majority of strains
under this condition. Consequently, differential expression of
genes indicative of responses to applied stresses are consistent
with that observed by others, supporting accuracy of our
differential gene expression analyses.

We also analyzed levels of responses for different groups of
bacteria, such as Gram-negative and -positive, aerobic and
microaerophilic, and different phylogenic orders (Fig. 1d, e, f).
The fraction of regulated genes were found to be relatively similar
between different groups. For Gram-negative and -positive
strains, however, responses to bile were significantly higher in
the latter group (Fig. 1d). Exceptions here were Aggregatibacter
actinomycetemcomitans, Campylobacter jejuni, F. tularensis, and
Neisseria meningitidis (Fig. 1b). The reason for this discrepancy in
response to bile is not clear, but it is believed that Gram-positive
bacteria are more sensitive to bile in general, and that the Gram-
negative outer membrane with lipopolysaccharides contributes to
bile protection31, which might explain the lower response.
However, bacterial species adapted to the mammalian intestine
are often resistant to bile, and since the majority of intestinal
bacteria in the strain collection are found in the Gram-negative
group, we cannot exclude that this bias also is reflected in the
comparison.

Clustering genes into gene groups for cross microbial com-
parisons. Comparing differential gene expression across different
bacterial species is important for broad and comprehensive
understanding of gene regulation and function in adaptation to
new environments. Therefore, we clustered genes from the
32 strains into gene groups using two different orthology and
homology approaches: one based on functional orthologs using
KEGG’s annotation tool GhostKOALA32 for KO groups, and one

based on isofunctional homologs using the PATRIC database
with Patric Global Family (PGFam)33. KO numbers are assigned
genes harboring the same function, independent of sequence
homology, while PGFam numbers are assigned genes with same
function and sequence homology (isofunctional homologs) as
indicated by RAST and CoreSEED34. PGFam groups are more
specific in terms of function and homology, but with fewer genes
per group. The tools assigned 6054 KO numbers to 63,831 genes,
representing 60.7% of totally 105,088 genes in the dataset, and
27,999 PGFam numbers to 97,565 genes, representing 92.8% of
the total number of genes (Fig. 2a).

Revealing probability of gene groups to be differentially
expressed. To predict probability of genes within KO or PGFam
groups to be regulated under certain conditions, we formulated
an equation (Eq. 1) that computes a stress condition-specific
score indicating ‘probability to be differentially expressed
(PTDEX)’. The equation was employed to gene groups with at
least 2 genes (5340 KO groups and 11,353 PGFam groups)
(Supplementary Data 3 and 4). The PTDEX score takes into
account how conserved the genes in the group are among the 32
pathogens, what proportion of the genes are differentially regu-
lated under a particular stress condition, how well this regulation
is preserved among the species in the database, and what number
of genes are regulated. We calculated stress condition-specific
PTDEX scores for KO and PGFam groups as

ngenesðonÞ
ngenesðtotalÞ

� nspecies onð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nstrain totalð Þ � nstrain databaseð Þp � log2ð1þ ngenes onð ÞÞ ð1Þ

The equation was developed in three parts, evaluating the
different criteria mentioned above. In the first part, proportion of
regulated genes in a particular gene group under a certain stress
condition was calculated. This calculation gives a value regardless
of large (well-conserved) or small (less-conserved) gene groups,
hence gives no indication regarding how well this regulation is
conserved among the species in the database. Therefore, in the
second part, the frequency of this regulation among the species in
the database was calculated. Here the number of observations at
the species level, not strain level was calculated, as there are
species with more than one strain in the database. This was done
to ensure that a likely similar regulation of same genes in different
strains of a species not affects the frequency. As bacterial strains
in the database are diverse in terms of phylogenetical order and
gene content, they are not expected to harbor genes from all gene
groups. Therefore, frequency is calculated as number of species
having at least one regulated gene divided by square root of

Table 1 The consensus in vivo relevant stress conditions. The stress conditions were kept as similar as possible for the accuracy.
Minor changes were done for certain species in certain conditions. Detailed information for the growth and stress conditions are
shown in Supplementary Data 1.

Condition Growth Medium Growth Temperature OD600 Stress exposure Exposure Time

Control (Ctrl) Ambient Med. Ambient Temp. 0.1–0.5 — 10 min
Acidic stress (As) Ambient Med. Ambient Temp. 0.1–0.5 pH: 3–5 10min
Bile stress (Bs) Ambient Med. Ambient Temp. 0.1–0.5 0.5% Bile Salts 10 min
Low iron (Li) Ambient Med. Ambient Temp. 0.1–0.5 250 μM 2,2-dipyridryl 10 min
Hypoxia (Hyp) Ambient Med. Ambient Temp. 0.1–0.5 Low oxygen 3-4 h
Nutritional downshift (Nd) Ambient Med. Ambient Temp. 0.1–0.5 1X M9 salts 30min
Nitrosative stress (Ns) Ambient Med. Ambient Temp. 0.1–0.5 250 μM Spermine NONOate 10min
Oxidative stress (Oxs) Ambient Med. Ambient Temp. 0.1–0.5 0.5–10mM H2O2 10min
Osmotic stress (Oss) Ambient Med. Ambient Temp. 0.1–0.5 0.5M NaCl 10 min
Stationary phase (Sp) Ambient Med. Ambient Temp. 0.5–2.5 Stationary phase 3–16 h
Temperature (Tm) Ambient Med. Ambient Temp. 0.1–0.5 41 °C 20min
Vir. ind. cond. (Vic) Ambient Med. Ambient Temp. 0.1–0.5 Varies Varies
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strains harboring the gene times strains in the database. The first
two parts of the score provide relative values of proportion of
regulated genes and frequency of their regulation, but not number
of regulated genes, thus reflecting only conservation of gene
groups and their regulation. Therefore, in the third part, the log2
value of total number of genes that are regulated in the gene
groups was calculated and value of one was added to avoid
obtainting a factor of zero for non-regulated genes. The log2 value
was used to minimize the effect of well conserved gene groups
against poorly conserved gene groups. This was very critical for
PTDEX score equation to give higher scores to more particular
stress associated gene groups then well-conserved genes unlike to
other statistical analysis such as hypergeometric test. While the
lowest PTDEX is zero due to no regulated genes, we observed the
highest PTDEX score (2.83) for PGF_00016395 (rpmD) under
hypoxia and stationary phase. This group has 29 genes encoded
in 28 species of which 23 genes in 23 species are differentially
regulated under hypoxia and stationary phase. The PTDEX score
is a transformation of differential expression of individual genes
from different species under each stress condition to a single
value (Fig. 2b) that can be used for comprehensive understanding
of gene regulation in bacteria.

As the calculation measures conservation of the genes and their
regulation among tested bacteria, the PTDEX scores of gene
groups that are highly conserved among the 32 strains but not
regulated in many would have similar PTDEX score with gene
groups that are less conserved but regulated in a high proportion
of strains harboring the gene. For example; leuS (PGF_06812369)

is conserved in 31 strains and regulated in only 11 species under
nutritional downshift and gcvPA (GF_00008774) is conserved in
6 strains and regulated in 4 species have similar PTDEX score
(0.43 and 0.44, respectively) for nutritional downshift. Score
values of ≥0.25, a value where at least 50% of the genes in the
groups are differentially regulated regardless of the number of
genes in the group was considered as ‘high PTDEX score’
(Supplementary Fig. 4a).

To test the power of PTDEX scores, we ranked KO and PGFam
groups based on PTDEX scores in low iron and oxidative stress
and plotted those representing the highest 20 (Fig. 2c). Many of
the genes with high KO and PGFam PTDEX scores for low iron
represented genes associated with iron uptake and iron home-
ostasis. Similarly, the genes with highest scores in oxidative stress
were genes known to respond to DNA damage and oxidative
stress (Fig. 2c). As expected, the highest 20 were not exactly the
same for the KO and PGFam groupings, but some of the expected
gene groups were found in both; such as bfr, bfd, tonB, and
exbD15,23,24 for low iron and lexA, dinI, ahpC, and ahpF29 for
oxidative stress (Fig. 2c). Furthermore, all the gene groups
representing genes indicative for the different stress conditions
shown in Supplementary Fig. 3a have high PTDEX scores
(Supplementary Fig. 4b). Interestingly, we observed similar levels
of PTDEX scores for KO and PGFam groups. Similar PTDEX
score for relatively smaller PGFam groups likely reflects a more
similar regulation of isofunctional homologs than of functional
orthologs. Therefore, for more accurate conclusions, we used
PGFam PTDEX scores for the remainder of our analyses.
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Fig. 2 Transformation of differential expression to PTDEX scores for cross-microbial comparisons. a Schematic illustration of clustering of 105,088
genes based on functional orthology (KO) and isofunctional homology (PGFam) and resulting KO and PGFam gene groups. b Illustration of the
transformation of differential expression values of genes from many pathogens that are clustered in one gene group into a PTDEX score for each stress
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Comparisons of stress responses between evolutionary distinct
bacterial groups. We next re-clustered genes of Gram-negative
and -positive strains into G- and G+ PGFam groups and re-
computed the PTDEX scores separately (Supplementary Data 5
and 6). We then generated a similarity matrix with the Pearson
correlation coefficient for PTDEX scores from 7105 G- PGFam
groups, representing 47,468 genes, and 2903 G+ PGFam groups,
representing 14,200 genes, for each stress condition. There were
significant differences in responses by Gram-negative versus
-positive strains, which supports previous studies35 (Fig. 3a).
Transcription factors, especially global regulators, are poorly
conserved, and transcriptional regulation has been found to be
more flexible than their target genes36. In support of this, an
analysis of differential expression of transcription factors in
response to the different stresses revealed high diversity between
Gram-negative and -positive strains (Supplementary Fig. 5).
However, despite substantial differences in PGFam groups, parts
of the responses were shared by Gram-negative and -positive
bacteria, where conditions showing the highest overlaps were
hypoxia, nutritional downshift, and stationary phase (Fig. 3b).
These analyses shows usage of PTDEX score as a novel approach
providing in-depth overviews of common and specific regulations
of the same genes in different species, simplifying cross microbial
comparisons.

Identification of intersections between stress responses.
Reponses to different stressors are expected to partly overlap due
to involvement of the same molecular pathways and functional
diversity of gene products. Many responses are expected to
involve halted growth, enabling translational adjustments and
redirection of resources. We next used PTDEX scores of G-/G+
PGFam groups to identify overlaps between different stress
responses. There were higher degree of overlaps in Gram-negative
compared to that of Gram-positive bacteria, where especially
hypoxia, stationary phase, and nutritional downshift overlapped
to high extent. Also responses to low iron, oxidative, and nitro-
sative stress, as well as responses to acidic and osmotic stress
overlapped (Fig. 3c). To reveal overlapping pathways and pro-
cesses, we implemented a co-expression module identification
algorithm37 on G- and G+ PGFam PTDEX scores. This gener-
ated six modules of PGFam groups for Gram-negatives showing
common patterns of PTDEX scores of PGfam groups in certain
combinations of stress conditions, and 3 modules in Gram
positives. KEGG pathway mapping of genes in these modules
indicated overlapping pathways and processes (Fig. 3d, Supple-
mentary Data 5). The higher number of genes involved in over-
lapping pathways in N-module-1 and P-module-1 is indicative of
more global responses to hypoxia, nutritional downshift and
stationary phase. In accordance, genes encoding RpsA and RplA,
involved in ribosome biogenesis and ArgH and LysC involved in
amino acid biosynthesis were differentially regulated under those
conditions in both Gram-negative and -positive strains (Fig. 3d).
As seen in N-module-2, genes encoding ribonucleoside-
diphosphate reductase subunits (nrdA, nrdB), and AMP nucleo-
sidase (amn) involved in Purine-Pyrimidine metabolism were
regulated in response to low iron, nitrosative stress and oxidative
stress, conditions known to induce DNA damage38. Accordingly,
nrdA and nrdB was previously shown to be induced upon
exposure to DNA damaging agents in E. coli39. The dataset did
not allow adequate comparisons between phylogenetical orders
due to the uneven distribution of strains; only Bacilli representing
Gram-positive strains (9 strains) and dominance of Gammapro-
teobacteria among Gram-negative strains (3 Epsilonproteo-
bacteria, 4 Betaproteobacteria, 14 Gammaproteobacteria).

Revealing universal stress responders including known anti-
microbial targets. Participation of gene products in responses to
multiple stresses can be key to conservation during evolutionary
diversification of species. To retrieve genes encoding these uni-
versal stress responders (USRs), we selected PGFam groups with
high PTDEX scores (≥0.25) in at least six conditions and con-
taining at least 11 genes from Gram-negative strains (21 in total)
and 4 from Gram-positive strains (9 in total) (Supplementary
Data 7). We identified 168 USRs (from 6465 individual genes),
where functional clustering with PATRIC subsystems40 revealed
that USRs are involved in basic biological processes such as
metabolism, energy generation, ribosome biogenesis, amino acid
biosynthesis, cell division, RNA processing, membrane transport
(Supplementary Fig. 6). Interestingly, 9 of the USR genes encode
targets for antibiotics, where mutations in their sequences been
shown to confer antibiotic resistance (Supplementary Fig. 6).
Hence, novel putative antibiotic targets might be found among
remaining 159 USRs. In accordance, nrdD and nrdG genes
encoding Class III ribonucleotide reductase, display high PTDEX
score in all conditions has indeed been suggested as a target for
compounds to inhibit cell growth41.

An attractive approach for future antimicrobials is the
development of narrow-spectrum or even species–specific drugs
to avoid cross-resistance in non-targeted bacteria, and we
therefore also retrieved genes representing species-specific USRs
(Supplementary Data 8). This group includes genes that are
specific to a particular species in the PATHOgenex dataset and
differentially regulated under at least 6 stress conditions. We
identified 2194 species-specific USRs of which 960 were
annotated as genes encoding hypothetical proteins, indicating
that a considerable portion of species–specific stress response is
still unknown and remain to be explored.

Stress responses identified in PATHOgenex are relevant for
infection in vivo. To reveal the in vivo relevance of the data
collection of in vitro obtained transcriptomes, we employed
expression profiles for clinically relevant pathogens obtained
during in vivo infection and compared these to PATHOgenex
data. We utilized recently published transcriptomes of the Gram-
negative P. aeruginosa in cystic fibrosis lungs42, and the Gram-
positive S. aureus (MSSA) in acute murine osteomyelitis43. The
comparisons showed that the majority of (75–83%) of the in vivo
regulated genes of both pathogens were co-regulated in at least
one of the in vitro stress conditions (Fig. 4a). Notable, 3–12% of
the regulated genes represented USRs, highlighting the potential
importance of those genes for adaptation to real host environ-
ments. In vivo regulated genes not co-regulated in any of the
in vitro conditions indicate existence of in vivo specific regula-
tion. This analysis showed that mimicking host stress conditions
is a relevant approach for studies aiming at understanding of
stress dynamics linked different infection scenarios.

To reveal specific stress responses associated with these
infections, the number of genes for each in vitro stress condition
that also was regulated during infection was determined.
Hypoxia, nutritional downshift, and stationary phase responses
were excluded as these conditions are complex and involve
multiple overlapping stress responses. This showed that responses
to nitrosative stress and osmotic stress were pronounced during
P. aeruginosa lung infection (Fig. 4b). P. aureginosa is known to
be exposed to low iron, oxidative stress, and osmotic stress in
microaenvironments of cystic fibrosis lungs42,44,45. However, this
is mostly based on functional annotation analysis using Gene
Ontology and KEGG pathway mapping. Although such analyses
provide information of infection dynamics, they are based on very
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low number of functionally annonated genes. Comparing to data
in PATHOgenex, we could retrieve more comprehensive
information about ongoing stress responses and found that
response to nitrosative stress during P. auroginosa lung infections
have been underestimated. The nitrosative stress related genes
differentially regulated in infected lungs involve for example the

narGHJI operon and narK encoding proteins are involved in
repair of damage caused by reactive nitrogen species46–48. Also
kguE, kguK, kguT, and kguD genes encoding proteins involved in
2-ketogluconate biosynthesis and catabolism pathways49 were
induced during infection and nitrosative stress only. Response to
osmotic stress was also rather pronounced during lung infection,
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of similarity between responses to different stresses in Gram-negative and -positive bacteria. The similarity was calculated using the Pearson correlation
coefficient of PGFam groups PTDEX scores in each condition. c Heat map showing degree of similarity between responses to different stress conditions in
Gram-negative and -positive bacteria. Similarities were calculated as in b and the similarity distances shown in a dendrogram. d Modules generated by
CemiTool showing conditions that involve similar regulation of gene groups with high PTDEX scores in Gram-negative and -positive bacteria. n indicates
number of PGFam groups within each module. The most enriched KEGG pathways/processes for each module are shown with the number of gene groups
indicated in brackets. See also Supplementary Data 5 and 6.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23588-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3282 | https://doi.org/10.1038/s41467-021-23588-w |www.nature.com/naturecommunications 7

http://bioinformatics.psb.ugent.be/webtools/Venn/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


involving expression of pscU, pscF, osmC, PA1323, and PA1324,
previously shown to be induced under osmotic stress50 and betA,
betB genes encoding choline dehydrogenase and glycine betaine
aldehyde dehydrogenase involved in osmoadaptation51 (Supple-
mentary Data 9). Similar analyses for S. aureus infection in the
murine osteomyelitis model showed a different pattern, with
many stress responses engaged, where low iron and osmotic stress

responses, were relatively lower than the others (Fig. 4c). The
response to acidic stress was most pronounced and involved
elevated expression of purC, E and K52. Osteomyelitis is
associated with high level of inflammation and bone tissue
destruction via osteoclastic resorption of bones53. Osteclasts
secrete hydrogen ions, collagenase, cathepsin K, and hydrolytic
enzymes during acute infection where the hydrogen ions lead to
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Fig. 4 Stress responses identified in PATHOgenex are relevant for infection in vivo and can be used for determination of environmental stresses for
pathogens at different infection niches. a Differentially expressed genes obtained from differential expression analysis of in vivo transcriptomes of P.
aeruginosa in cystic fibrosis lungs45 and S. aureus (MSSA) during acute murine osteomyelitis46 were mapped to in vitro stress responses of the
corresponding species. Log2 fold changes in vivo vs. in vitro (control) are shown with genomic localization of genes for each species. The genes that are co-
regulated (up/up or down/down) between in vivo and in vitro stress conditions are shown in gray or blue (conserved USRs) bubbles where the size of the
bubble indicates number of conditions showing co-regulation with in vivo. Genes with in vivo specific regulation, which has no co-regulation at any of the
stress conditions, are shown with red bubbles. The bars in the upper left corner of each bubble plot indicate the proportion of genes that are similarly
regulated in vivo and in vitro (grey and blue, where blue indicate USRs) and proportion of genes showing in vivo specific regulation (red). b The number of
genes that are co-regulated during infection for each of the PATHOgenex in vitro stress conditions for P. aeruginosa and c, for S. aureus. Hypoxia, nutritional
downshift, and stationary phase were not included due to the presence of variety of stress responses under those conditions. Source data are provided as a
Source Data file.
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dissolution of bone minerals and an acidic miroenvironment,
which was reflected in our comparison with pronounced acidic
stress response (Fig. 4c). We also noted increased expression of a
gene (RSAU_000352), encoding a super-antigen-like exotoxin
during acute infection and in acidic stress only in vitro, suggesting
a possible functional role for this toxin under acidic microenvir-
onments during infection (Supplementary Data 9). The second
most pronounced response during the acute S. aureus infection
was measured for virulence inducing condition, which in this case
was treatment of bacteria with human serum (Fig. 4c). Taken
together, comparison of in vivo bacterial responses to stress
responses in PATHOgenex could provide insight to environ-
mental cues at in vivo infection sites and reveal adaptation
strategies employed by bacterial pathogens.

ncRNAs in bacterial stress responses. Analysing overall tran-
scription, we observed that a substantial proportion of RNAs
were transcribed from non-coding DNA regions, including
sRNAs, regulatory ncRNAs, 5′ untranslated regions (UTRs), 3′-
UTRs, and intergenic regions (noteworthy, this did not include
transcription of cis-antisense RNA encoded on CDS’s opposite
strand). The proportion is expected to be even higher than cal-
culated, since probably many sRNAs were excluded during
sample preparation due to the >100 nt cut-off for library pre-
paration. In some bacteria, expression of non-CDSs was higher
than that of CDSs in hypoxia, nutritional downshift, and sta-
tionary phase conditions. For example, 72% of reads mapped to
V. cholerae genome were transcripts encoded from non-coding
regions under hypoxia. Corresponding numbers for E. faecalis
were 62% under hypoxia and 60% at stationary phase, and for N.
meningitidis was 53% under nutritional downshift (Supplemen-
tary Data 2). Noteworthy, for most species, the percent of tran-
scripts from non-CDS was increased upon stress exposure in
comparison to control (Fig. 5a). Similar proportions of non-CDS
transcripts and also stress-induced upregulations were also shown
in a previous study of Salmonella18.

The observed stress associated increases of transcripts from
non-CDS in many cases correlated with increased expression of
tmRNA, also known as SsrA, a conserved and abundant RNA in
bacteria responsible to restore translation in detrimental
situations54. Induction of tmRNA were particularly high at
stationary phase, hypoxia, and upon nutritional downshift, which
indeed are conditions associated with halted growth (Fig. 5b and
Supplementary Data 10). In line with this, smpB, encoding a
protein interacting with tmRNA, was identified as a USR with
high PTDEX scores in those conditions. (Supplementary Fig. 6).
The tmRNA level was however not correlated with expression
ratios of non-CDS regions for all species (Fig. 5a, b). For example
in Klebsiella pneumoniae, expression of the carbon storage
regulatory ncRNA CsrB, involved in many biological processes55,
correlated with expression ratios of non-CDS regions in many
stress conditions except stationary phase (Fig. 5a, d). For
stationary phase we found high extent read mapping to 5′-UTR
and 3′-UTR regions of a CDS (KPN_01149) encoding a
hypothetical protein, which has 2 paralogs with diverse UTR
sequences in the genome (Supplementary Fig. 7a, Fig. 5d, e). The
expressed region started at a position reported to be a
transcriptional start site56, supporting the accuracy of this finding
(Fig. 5e). Also S. aureus showed expression from non-coding
regions not corresponding with expression of tmRNA. Here, high
level of reads were mapped to SRS42, a 1232-nucleotide long
ncRNA (Fig. 5f, g) previously shown to contribute to hemolysis
and production of alpha-toxin57. Analysis of data from a previous
study43 showed that expression of SRS42 indeed is increased in S.
aureus during infection (Supplementary Fig. 7b).

Another abundant ncRNA with potential to impact transcrip-
tion widely spread among different bacteria is 6S RNA58. In E
coli, 6 S RNA bind the σ70 RNA polymerase and inhibit
transcription, promoting adaption to stationary phase and
environmental stresses59. Since expression profiles of many other
bacteria suggest similar involvement of 6S RNA in adaption to
stationary phase, but also potentially different roles in other60, we
analyzed of 6S RNA expression during different stresses in the
PATHOgenex strains. The proportion of 6S RNA was here found
to be rather stable under most stress conditions in comparison to
control, but increased under hypoxia, stationary phase, and
virulence inducing conditions in some species (Supplementary
Fig. 8). The proportion of 6S RNA in C. jejuni andM. tuberculosis
stood out among the other species with higher expression levels.
6S RNA in Mycobacteria, known as Ms1 RNA has been reported
to have altered binding to the RNA polymerase, not requiring the
holoenzyme61, which might suggest an alternative role of this
variant. However, also here the highest expression levels are seen
for stationary phase and hypoxia, which is in line with that of
many traditional 6S RNAs.

The PATHOgenex RNA atlas provides opportunities for
exploring gene expression in human pathogens. All transcrip-
tion data have been collected in an interactive database designed
to serve researchers, the PATHOgenex RNA atlas (www.
pathogenex.org). The data can be browsed by selecting strain(s)
of interest and searched with one or multiple locus tags, protein
ID, gene product, and PGFam groups. The database provides
information of expression of pathways and operons across dif-
ferent stress conditions. As an example, we show that the three
type VI secretion systems (T6SSs) operons in P. aeruginosa PAO1
are regulated under different stress conditions (Supplementary
Fig. 9a). Such data can help in predicting operon structures,
regulation of genes in operons under different stress conditions,
or regulation of genes in specific genomic regions such as plas-
mids and genomic islands. PATHOgenex RNA atlas also allows
the retrieval of most regulated gene groups under certain stress
condition(s) in a wide range of bacterial pathogens. We show the
top 5 highly regulated gene groups under virulence inducing
conditions as an example (Supplementary Fig. 9b). The gene with
highest PTDEX score under virulence condition was adhE,
encoding bi-functional acetaldehyde-CoA dehydrogenase and
alcohol dehydrogenase, previously shown to be important for E.
coli and S. enterica virulence62,63. We could also see that adhE is
differentially regulated in Gram-positive and -negative bacteria by
retriving differential expression levels (Supplementary Fig. 9c).
Moreover, the database can also provide additional information
on gene expression level in individual species under all tested
conditions (Supplementary Fig. 9d).

Discussion
Bacterial stress responses, which include coordinated regulation
and interactions between different gene products involved in a
variety of biological processes are critical for survival of pathogens
and therefore attractive potential targets for future antimicrobials.
However, genetically diverse pathogens harbor both orthologues
and distinct biological processes to adapt to stresses64, which
hitherto has hampered investigations aiming at deciphering stress
responses at global level. To meet this challenge, we have gen-
erated a high-quality resource with transcriptome datasets for
comprehensive cross microbial analyses of orthologues and dis-
tinct biological processes. Comparisons of in vivo regulated genes
of S. aureus and P. aeruginosa showed that the stress responses
selected covered a majority of responses that occur during
infection. The high quality of the PATHOgenex atlas rely on the
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accuracy, depth, and dimension of the data. All experiments have
been performed under similar conditions and resulting data have
been handled similarly. This makes PATHOgenex a unique
resource with high potential to provide novel information and
also constitute a unique source for Big Data approaches. In
contrast to challenging properties of existing data collections such
as noisy, incomplete, or limited datasets originated from different
labs with different experimental setups and bioinformatics

analyses65–68, the PATHOgenex RNA atlas provides clean and
complete datasets for machine learning algorithms aiming to
understand complex biological problems in infection biology.

The high number and diversity of bacterial species in the
PATHOgenex datasets allowed generation of a score system,
providing response-specific PTDEX scores for iso-functional gene
groups. These scores can be used to analyze the big dataset in
terms of differential expression and regulation of common and
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specific genes associated with certain responses in different bac-
terial groups. We here used the score to identify general USRs, a
group of conserved genes involved in responses to multiple
stresses in different bacteria, as well as species–specific USRs,
which all can be interesting for exploring novel antimicrobial
targets. The PTDEX score, which is indicative of regulation under
particular stress condition(s), also provides hints about the
function of products of genes encoding hypothetical and
uncharacterized proteins. PATHOgenex can therefore be useful
for designing experiments to reveal function of these gene pro-
ducts. This in turn can contribute with new information for
functional annotations of microbial genes, which currently suffers
from being poorly annotated, lacking information for a high
proportion of genes. There is a clear need to increase the number
of functionally annotated genes to facilitate biological under-
standings of transcriptomic data and the PATHOgenex RNA
atlas can partly complement with expression levels and gene
regulation data.

We also show examples where data in PATHOgenex can be
used to get information of stress conditions encountered by
pathogens during in vivo infections. Compared to the commonly
used Gene Ontology and KEGG pathway mapping with a low
number of functionally annotated genes, the use of PATHOgenex
for comparative analyses increases possibilities to retrieve new
information of bacterial microenvironments. We also found that
significant proportions of transcriptional responses to stressful
environments where from non-coding regions of the genomes.
Besides known ncRNAs such as tmRNA and CsrB, we could
show examples of ncRNAs that significantly increased in abun-
dance during certain stresses in K. pneumoniae and S. aureus.
Although not in the scope of this study, but given the high clinical
relevance of these two pathogens, the potential role and function
of these ncRNAs should be investigated further.

Taken together, we provide comprehensive information of gene
expression at a single gene level in individual species, and at a
broader level including gene groups, PTDEX scores and expres-
sion in multiple species. Results including different cross-
microbial comparisons, retrieval of information about bacterial
stress responses during infection, as well as the overall screen of
transcripts from non-coding regions of bacteria exposed to
environmental stresses shows the high potential of the PATHO-
genex datasets as a data source. The dataset and associated find-
ings have strength to give depth to comparative genomics studies
and to more focused analyses of different pathogens. All together,
PATHOgenex offers a rich source for researchers to generate
novel hypotheses and design experiments accordingly, by that
providing new opportunities for novel discoveries.

Methods
Bacterial growth and stress exposures. All bacterial strains shown in Fig. 1a
were grown in their optimal growth medium and temperatures in laboratories
specialized in each species. The strength of the stress with the different agents and
associated exposure time was designed to be as similar and relevant as possible for
each species (Supplementary Data 1). Minor changes were necessary for certain
conditions; for example, the “low pH level” used for H. pylori strains were lower
than for the others. Three bacterial cultures were grown overnight and then sub-
cultured to a new culture vial with 1:50–1:100 dilution. The cultures were grown
until exponential phase with an OD600 of 0.1–0.6 and exposed to the 11 stresses
separately. Un-exposed cultures at exponential growth were used as controls for
differential expression analysis. For nutritional downshift, bacterial cultures were
spun down at 5,000 g for 2 min, the supernatant removed, the pellets resuspended
in 1× M9 supplemented with 0.1 M MgCl2 and 0.1 M CaCl2, and incubated for 30
minutes at ambient temperature for each strain. For hypoxia, 2 ml screw cap tubes
were filled with bacterial culture at exponential growth and the caps were screwed
on without leaving space for air. The stress exposures were stopped by adding 0.5%
(final concentration) phenol:ethanol solution (Supplementary Fig. 1a).

Total RNA isolation. One milliliter of triplicate bacterial cultures exposed to the
stresses and un-exposed control culture were immediately pelleted by

centrifugation at 5000 × g at room temperature for 2 min after adding phenol:
ethanol. The supernatants were removed and pellets resuspended in 0.5 ml Trizol
solution. For Gram-negative bacteria, cells were homogenized in Trizol solution by
pipetting up and down 15 times. For Gram-positive bacteria, culture suspensions in
Trizol were transferred to previously cooled bead beater tubes containing 0.1-mm
glass beads and treated with Mini-Beadbeater (Biospec Products Inc, USA) twice at
a fixed speed for 45 s, and then cooled on ice for 1 min between the treatments.
Culture homogenates were incubated at room temperature for 5 min and then
supplemented with 0.2 ml chloroform, thoroughly mixed by shaking 10 times, and
incubated for 3 min. After centrifugation at 12,000 × g at 4 °C for 15 min, the
aqueous upper phase was carefully transferred to new RNase-free tubes. An equal
volume of 99% ethanol was added to the aqueous phase and isolation continued
using the Direct-Zol RNA Miniprep Plus (Zymo Research, USA) RNA purification
kit protocol. Total RNAs were eluted in RNase free water in RNase free tubes. The
total RNA concentrations were measured using the Qubit BR RNA Assay Kit
(ThermoFisher Scientific, USA) and RNA integrity confirmed on a 0.8% agarose
gel in TBE buffer.

RNA-seq library preparation with RNAtag-Seq. All rRNA-depleted RNA-seq
library preparations were performed according to Shishkin et al. (2015), with
minor modifications. RNAtag-Seq allows multiple library preparations in one tube,
with initial tagging of total RNA samples with modified (5′P and 3′ SpcC3) DNA
barcoded adaptors, each harboring a unique 8 nt sequence used to demultiplex
individual libraries after sequencing. We combined the library preparation of three
biological replicates from 11 stress-exposed samples and the un-exposed control
sample, resulting in 36 library preparations in one tube for each bacterial strain. To
tag the 36 replicates, 36 unique barcoded adaptors were used with every three
barcodes used for samples from the same stress conditions in all bacterial species
for consistentcy (Supplementary Data 2). A total of 100 ng total RNA was used for
each biological replicate. The total RNA was fragmented in 2× FastAP Thermo-
sensitive Alkaline Phosphatase buffer for 3 min at 94 °C, DNase treated, and
dephosphorylated with a combination of TURBO DNase and Thermosensitive
Alkaline Phosphatase in 1× FastAP buffer for 30 min at 37 °C. Fragmented, DNase-
treated, and dephosphorylated total RNAs were cleaned with a 2× reaction volume
of Agencourt RNAClean XP beads. Cleaned total RNAs were incubated with 100
pmol of the unique DNA barcode adaptors at 70 °C for 3 min, and then ligated
with T4 RNA ligase 1 for 90 min at 22 °C. The ligation was stopped and the enzyme
denatured by the addition of RLT buffer. The 36 denatured ligation mixes were
then pooled and cleaned in a Zymo Clean & ConcentratorTM-5 column according
to the manufacturer’s 200 nt cut-off protocol. The RNAs were eluted in 32 μl of
RNase-free water. Ribosomal RNA was depleted using the Ribo-ZeroTM Magnetic
Gold Kit (Bacteria) according to the manufacturer’s instructions. The first-strand
cDNA of each pool was generated using an AffinityScript Multiple Temperature
cDNA synthesis kit with 50 pmol of AR2 primer at 55 °C for 55 min. The RNA was
degraded by adding a 10% reaction volume of 1 N NaOH at 70 °C for 12 min and
the reaction neutralized with an 18% reaction volume of 0.5 M acetic acid. After
cleaning the reverse transcription primers with a 2× reaction volume of RNAClean
XP beads, the 3Tr3 adapter was ligated with T4 RNA ligase 1 at 22 °C with
overnight incubation. The second ligation was cleaned first with a 2×, and secondly
1.5×, reaction volume of RNAClean XP beads. The cDNA was then used as the
template for PCR reaction with FailSafeTM PCR enzyme mix using 12.5 pmol
2P_univP5 as forward primers and 12.5 pmol ScriptSeqTM Index (barcode) PCR
primers as reverse primers. The PCR cycles were as follows: 95 °C for 3 min,
followed by 12 cycles at 95 °C for 30 s, 55 °C for 30 s, and 68 °C for 3 min, and then
finishing at 68 °C for 7 min. The PCR product was cleaned first with a 1.5×, and
secondly 0.8×, reaction volume of AMPure beads and eluted in RNAse free water.
The library concentrations were measured using the QubitTM dsDNA HS Assay Kit
and the library insert size determined by the Agilent DNA 1000 Kit in a 2100
Electrophoresis Bioanalyser Instrument (Agilent, USA). The oligonucleotides used
in RNAtag-seq sequencing are shown in Supplementary Table 1.

RNA-seq data analysis. The RNA-seq libraries generated by RNAtag-Seq were
sequenced by either single-end or paired-end Illumina sequencing at SciLifeLab,
Stockholm. Each library harboring a pool of 36 RNA samples was demultiplexed
according to the unique 8 nt on the ligated barcode adaptors to separate reads from
each replicate. The number of reads for the different barcoded samples did not
reveal significant variation across conditions and species, excluding bias regarding
over-representation of one or a set of barcodes during library preparation. The
sequencing reads generated in this study were deposited in GEO with accession
number GSE152295. Demultiplexed reads were then mapped to the genome of the
species to which the RNAs belong in an annotation-independent manner. The
accession numbers of the RefSeq reference genomes used for each strain can be
found in Supplementary Data 1. The number of reads mapped to CDSs, rRNA, and
tRNA was calculated according to the annotation files. Read mapping to reference
genomes showed efficient rRNA depletion, with only 0.1–5% reads mapping to
rRNA and tRNAs, except for Campylobacter jejuni, two of the H. pylori strains, and
Neisseria gonorrhoeae, which had higher proportions mapping to rRNA (Supple-
mentary Data 2). The library sequencing for these species was deep enough to
cover 94% of the coding sequences (CDSs), with >10 reads per CDS in the least
efficiently depleted library. The number of reads mapped to the non-coding regions
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were calculated by subtracting the reads mapped to the annotated regions from the
total number of mapped reads. The sequencing reads from primary transcripts of
K. pneumoniae56 with accession number SRR408498 were downloaded from
Sequence Read Archive (SRA) and mapped to the same reference genome used in
this study. In vivo and in vitro RNA-seq reads of S. aureus strain 6850 (accession
number ERP005459)43 and P. aeruginosa PAO1 (accession number GSE119356)42

were downloaded from GEO and mapped to RefSeq reference genome CP006706
and NC_002516, respectively. The mappings of in vivo originated reads were
performed with at least 95% correct matching to discriminate reference genome-
specific reads and avoid mapping of host transcripts. Reads from P. aeruginosa
lung lower peripheral lobe sample were excluded due to low transcriptome
coverage42. All of the demultiplexing and read mapping steps were performed in
CLC Genomic Workbench (Qiagen, USA).

For differential gene expression analysis, the trimmed mean of M values
(TMM)69 normalization method was used to normalize the sequencing depth of
the individual libraries. For each bacterial species, the comparisons were performed
between multiple groups and the control sample so that the full dataset could be
used for fitting the generalized linear model. Using the complete datasets with
multiple group comparisons allowed us to determine whether a gene has unstable
expression for which the variation is random or is differentially expressed in
response to the stress. Read values for genes with a maximum group mean
expression (the maximum average TPM value in the statistical comparison group)
<20 were removed and a threshold of 1.5-fold change with FDR-adjusted p-value
<0.05 was employed to determine differential expression.

Comparisons of in vivo differentially regulated genes of S. aureus and P.
aeruginosa to in vitro stress responses. For comparison between the S. aureus
strain 6850 strain used for the mouse infection study and in vitro induced stress
responses of S. aureus MSSA A476 in PATHOgenex, homologs genes were iden-
tified with PATRIC’s Proteome Comparison Service. For P. aeruginosa PAO1 the
same strain was used as reference genome. Co-regulated genes in vivo and each
in vitro stress conditions were determined with the same differential expression
profiles such as down-regulated in both conditions or up-regulated in both
conditions.

Generation of a phylogenetic tree of 32 strains. A phylogenetic tree of the
32 strains based on NCBI taxonomy was generated with PhyloT in Newick format.
The visualization of the tree was achieved using iTol.

Clustering 32 strains based on expression profiles. Hierarchical clustering, with
Euclidian distance, of 32 strains based on the percent of genes expressed (TPM ≥
10) in all 12 conditions, percent of genes expressed in at least one condition, and
percent of genes not expressed in any of the conditions was performed with
ClustVis70,71.

Clustering 105,088 genes with orthology/homology. The KEGG orthology
groups were assigned for clustering genes based on functional orthologs. The
amino acid sequences of all CDSs for each strain were uploaded to GhostKOALA32

to assign the best KO group in the genus_prokaryotes KEGG GENES database.
Clustering based on isofunctional homologs was performed with PATRIC’s Pro-
teome Comparison Service. The amino acid sequences of all CDSs for each strain
were compared using its own annotated genome, if available, or the closest strain to
assign the best PGFam group for each CDS.

PTDEX score calculation. The PTDEX score was calculated for the orthology/
homology groups using Python scripts and Jupyter notebooks, relying on the open-
source libraries NumPy and Pandas. The PTDEX score formula relies on the
definition of differentially expressed genes given in “RNA-Seq Analysis” above and
the equation shown in Eq. 1, where ngenes(on) is the number of differentially
expressed genes, maximum group mean >= 20, fold change >1.75 with FDR-
adjusted p-value <0.05, in the orthology/homology gene group, ngenes(total) is the
total number of genes in the group, nspecies(on) is the number of species for which at
least one of the orthology group genes is differentially regulated, nstrains(total) is the
total number of strains for which at least one of the orthology group genes is
present, and nstrains(database) is the total number of strains in the database
(nstrains(database) =32 for general PTDEX scores, 21 for Gram negative-specific, 9
for Gram-positive-specific PTDEX scores). The additional logarithmic component
is a weight factor to give more relative importance to orthology/homology groups
with more genes.

Generation of co-expression modules and KEGG pathway enrichments. The
co-expression Modules Identification tool (CEMiTool)37 was implemented on
PGFam groups of Gram-negative and -positive strains to find PGFam groups with
similar PTDEX score patterns over the 11 stress conditions. PGFam groups
associated with each module can be found in Supplementary Data 5 and 6. Each
PGFam group associated with the particular module, if possible, was converted in
KO groups and KO groups were used in the KEGG orthology database to map
pathways.

PATHOgenex website construction. PATHOgenex was built using PHP Laravel
Framework 6.18.2 and PHP 7.4.4 for server-side data processing, Javascript
ECMAScript 2015 for the front end, and D3.js 5.16.0 and Plotly 1.40.0 libraries for
the generation of the interactive visualizations. Linux distribution CentOS-8 with
the 64-bit kernel 4.18.0 running on four processor cores and 64 Gb of RAM is used
to host the web service on the in-house computational cluster.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets with sequencing reads and processed data generated/analyzed during this
study are available at GEO under accession number GSE152295. Previously published P.
aeruginosa RNA-seq data from lung tissue or pure cultures and S. aureus RNA-seq data
from mouse osteomyelitis model and pure culture are available at GEO under accession
number GSE119356 and at ENA under the accession number PRJEB6003, respectively.
The PATHOgenex RNA atlas with global expression profiles of the 32 bacterial
pathogens under 11 stress conditions and an un-exposed control condition as well as
PTDEX scores of PGfam gene groups are publicly available at www.pathogenex.
org. Source data are provided with this paper.

Code availability
The custom scripts employed to calculate PTDEX scores from differential expression
analysis data are available at Zenodo (https://zenodo.org/record/4708491#.
YID1nOaxVE5).

Received: 6 October 2020; Accepted: 5 May 2021;

References
1. Malachowa, N., Kobayashi, S. D., Sturdevant, D. E., Scott, D. P. & DeLeo, F. R.

Insights into the Staphylococcus aureus-host interface: global changes in host
and pathogen gene expression in a rabbit skin infection model. PLoS ONE 10,
e0117713 (2015).

2. Mandlik, A. et al. RNA-Seq-based monitoring of infection-linked
changes in Vibrio cholerae gene expression. Cell Host Microbe 10, 165–174
(2011).

3. Avican, K. et al. Reprogramming of Yersinia from virulent to persistent mode
revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 11, e1004600
(2015).

4. Nuss, A. M. et al. Tissue dual RNA-seq allows fast discovery of infection-
specific functions and riboregulators shaping host-pathogen transcriptomes.
Proc. Natl Acad. Sci. USA 114, E791–E800 (2017).

5. Klinkert, B. & Narberhaus, F. Microbial thermosensors. Cell Mol. Life Sci. 66,
2661–2676 (2009).

6. Lund, P., Tramonti, A. & De Biase, D. Coping with low pH: molecular
strategies in neutralophilic bacteria. FEMS Microbiol Rev. 38, 1091–1125
(2014).

7. Miller, E. F. & Maier, R. J. Ammonium metabolism enzymes aid Helicobacter
pylori acid resistance. J. Bacteriol. 196, 3074–3081 (2014).

8. Hofmann, A. F. & Hagey, L. R. Bile acids: chemistry, pathochemistry, biology,
pathobiology, and therapeutics. Cell Mol. Life Sci. 65, 2461–2483 (2008).

9. Gonzalez-Escobedo, G., Marshall, J. M. & Gunn, J. S. Chronic and acute
infection of the gall bladder by Salmonella Typhi: understanding the carrier
state. Nat. Rev. Microbiol 9, 9–14 (2011).

10. Prouty, A. M., Schwesinger, W. H. & Gunn, J. S. Biofilm formation and
interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun.
70, 2640–2649 (2002).

11. Loh, J. T., Torres, V. J. & Cover, T. L. Regulation of Helicobacter pylori cagA
expression in response to salt. Cancer Res 67, 4709–4715 (2007).

12. Ishikawa, T. et al. Pathoadaptive conditional regulation of the type VI
secretion system in Vibrio cholerae O1 strains. Infect. Immun. 80, 575–584
(2012).

13. Fang, F. C., Frawley, E. R., Tapscott, T. & Vazquez-Torres, A. Bacterial stress
responses during host infection. Cell Host Microbe 20, 133–143 (2016).

14. Garbe, J. & Collin, M. Bacterial hydrolysis of host glycoproteins - powerful
protein modification and efficient nutrient acquisition. J. Innate Immun. 4,
121–131 (2012).

15. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe
13, 509–519 (2013).

16. Vazquez-Torres, A. Redox active thiol sensors of oxidative and nitrosative
stress. Antioxid. Redox Signal 17, 1201–1214 (2012).

17. Schaffer, K. & Taylor, C. T. The impact of hypoxia on bacterial infection. FEBS
J. 282, 2260–2266 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23588-w

12 NATURE COMMUNICATIONS |         (2021) 12:3282 | https://doi.org/10.1038/s41467-021-23588-w |www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152295
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119356
http://www.ebi.ac.uk/ena/data/view/PRJEB6003
http://www.pathogenex.org
http://www.pathogenex.org
https://zenodo.org/record/4708491#.YID1nOaxVE5
https://zenodo.org/record/4708491#.YID1nOaxVE5
www.nature.com/naturecommunications


18. Kroger, C. et al. An infection-relevant transcriptomic compendium for
Salmonella enterica Serovar Typhimurium. Cell Host Microbe 14, 683–695
(2013).

19. Smith, C., Stringer, A. M., Mao, C., Palumbo, M. J. & Wade, J. T. Mapping the
Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion.
mBio 7(2016).

20. Bischler, T., Tan, H. S., Nieselt, K. & Sharma, C. M. Differential RNA-seq
(dRNA-seq) for annotation of transcriptional start sites and small RNAs in
Helicobacter pylori. Methods 86, 89–101 (2015).

21. Hornischer, K. et al. BACTOME-a reference database to explore the sequence-
and gene expression-variation landscape of Pseudomonas aeruginosa clinical
isolates. Nucleic Acids Res. 47, D716–D720 (2019).

22. Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W. & Livny, J. How deep is deep
enough for RNA-Seq profiling of bacterial transcriptomes? Bmc Genomics
13, 734 (2012).

23. Ochsner, U. A., Wilderman, P. J., Vasil, A. I. & Vasil, M. L. GeneChip
expression analysis of the iron starvation response in Pseudomonas
aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol.
Microbiol 45, 1277–1287 (2002).

24. McHugh, J. P. et al. Global iron-dependent gene regulation in Escherichia coli.
A new mechanism for iron homeostasis. J. Biol. Chem. 278, 29478–29486
(2003).

25. Cairney, J., Booth, I. R. & Higgins, C. F. Osmoregulation of gene expression in
Salmonella typhimurium: proU encodes an osmotically induced betaine
transport system. J. Bacteriol. 164, 1224–1232 (1985).

26. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. A novel DNA-binding
protein with regulatory and protective roles in starved Escherichia coli. Genes
Dev. 6, 2646–2654 (1992).

27. Altuvia, S., Almiron, M., Huisman, G., Kolter, R. & Storz, G. The dps
promoter is activated by OxyR during growth and by IHF and sigma S in
stationary phase. Mol. Microbiol. 13, 265–272 (1994).

28. Hua, Q., Yang, C., Oshima, T., Mori, H. & Shimizu, K. Analysis of gene
expression in Escherichia coli in response to changes of growth-limiting
nutrient in chemostat cultures. Appl Environ. Microbiol. 70, 2354–2366
(2004).

29. Dubbs, J. M. & Mongkolsuk, S. Peroxide-sensing transcriptional regulators in
bacteria. J. Bacteriol. 194, 5495–5503 (2012).

30. Poole, R. K. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem
Soc. Trans. 33, 176–180 (2005).

31. Begley, M., Gahan, C. G. & Hill, C. The interaction between bacteria and bile.
FEMS Microbiol Rev. 29, 625–651 (2005).

32. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA:
KEGG Tools for Functional Characterization of Genome and Metagenome
Sequences. J. Mol. Biol. 428, 726–731 (2016).

33. Wattam, A. R. et al. PATRIC, the bacterial bioinformatics database and
analysis resource. Nucleic Acids Res 42, D581–D591 (2014).

34. Davis, J. J. et al. PATtyFams: protein families for the microbial genomes in the
PATRIC Database. Front Microbiol 7, 118 (2016).

35. Rodionov, D. A. Comparative genomic reconstruction of transcriptional
regulatory networks in bacteria. Chem. Rev. 107, 3467–3497 (2007).

36. Lozada-Chavez, I., Janga, S. C. & Collado-Vides, J. Bacterial regulatory
networks are extremely flexible in evolution. Nucleic Acids Res 34, 3434–3445
(2006).

37. Russo, P. S. T. et al. CEMiTool: a Bioconductor package for performing
comprehensive modular co-expression analyses. BMC Bioinforma. 19, 56
(2018).

38. Overton, T. W. et al. Widespread distribution in pathogenic bacteria of di-iron
proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J.
Bacteriol. 190, 2004–2013 (2008).

39. Gibert, I., Calero, S. & Barbe, J. Measurement of in vivo expression of nrdA
and nrdB genes of Escherichia coli by using lacZ gene fusions.Mol. Gen. Genet
220, 400–408 (1990).

40. Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial
Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45,
D535–D542 (2017).

41. Torrents, E. Ribonucleotide reductases: essential enzymes for bacterial life.
Front Cell Infect. Microbiol 4, 52 (2014).

42. Kordes, A. et al. Genetically diverse Pseudomonas aeruginosa populations
display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat.
Commun. 10, 3397 (2019).

43. Szafranska, A. K. et al. High-resolution transcriptomic analysis of the adaptive
response of Staphylococcus aureus during acute and chronic phases of
osteomyelitis. mBio 5 (2014).

44. Rossi, E., Falcone, M., Molin, S. & Johansen, H. K. High-resolution in situ
transcriptomics of Pseudomonas aeruginosa unveils genotype independent
patho-phenotypes in cystic fibrosis lungs. Nat. Commun. 9, 3459 (2018).

45. Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human
infection. Proc. Natl Acad. Sci. USA 115, E5125–E5134 (2018).

46. Rabin, R. S. & Stewart, V. Dual response regulators (NarL and NarP)
interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-
regulated gene expression in Escherichia coli K-12. J. Bacteriol. 175,
3259–3268 (1993).

47. Jayaraman, P. S., Cole, J. A. & Busby, S. J. Mutational analysis of the
nucleotide sequence at the FNR-dependent nirB promoter in Escherichia coli.
Nucleic Acids Res 17, 135–145 (1989).

48. Wu, H. C., Tyson, K. L., Cole, J. A. & Busby, S. J. W. Regulation of
transcription initiation at the Escherichia coli nir operon promoter: a new
mechanism to account for co-dependence on two transcription factors. Mol.
Microbiol. 27, 493–505 (1998).

49. Sun, W. J. et al. Enhancing 2-Ketogluconate production of Pseudomonas
plecoglossicida JUIM01 by maintaining the carbon catabolite repression of 2-
Ketogluconate metabolism. Molecules 23, 2629 (2018).

50. Aspedon, A., Palmer, K. & Whiteley, M. Microarray analysis of the osmotic
stress response in Pseudomonas aeruginosa. J. Bacteriol. 188, 2721–2725
(2006).

51. Sleator, R. D. & Hill, C. Bacterial osmoadaptation: the role of osmolytes in
bacterial stress and virulence. FEMS Microbiol Rev. 26, 49–71 (2002).

52. Zhou, C. Y. & Fey, P. D. The acid response network of Staphylococcus aureus.
Curr. Opin. Microbiol. 55, 67–73 (2020).

53. Horst, S. A. et al. A novel mouse model of Staphylococcus aureus chronic
osteomyelitis that closely mimics the human infection: an integrated view of
disease pathogenesis. Am. J. Pathol. 181, 1206–1214 (2012).

54. Keiler, K. C. Physiology of tmRNA: what gets tagged and why? Curr. Opin.
Microbiol 10, 169–175 (2007).

55. Liu, M. Y. et al. The RNA molecule CsrB binds to the global regulatory protein
CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272,
17502–17510 (1997).

56. Kim, D. et al. Comparative analysis of regulatory elements between
Escherichia coli and Klebsiella pneumoniae by genome-wide transcription
start site profiling. PLoS Genet. 8, e1002867 (2012).

57. Horn, J. et al. Long Noncoding RNA SSR42 Controls Staphylococcus aureus
alpha-toxin transcription in response to environmental stimuli. J. Bacteriol.
200, e00252-18 (2018).

58. Wehner, S., Damm, K., Hartmann, R. K. & Marz, M. Dissemination of 6S
RNA among bacteria. RNA Biol. 11, 1467–1478 (2014).

59. Wassarman, K. M. 6S RNA: a small RNA regulator of transcription. Curr.
Opin. Microbiol 10, 164–168 (2007).

60. Wassarman, K. M. 6S RNA, a Global Regulator of Transcription. Microbiol
Spectr 6(2018).

61. Hnilicova, J. et al. Ms1, a novel sRNA interacting with the RNA polymerase
core in mycobacteria. Nucleic Acids Res 42, 11763–11776 (2014).

62. Beckham, K. S. et al. The metabolic enzyme AdhE controls the virulence of
Escherichia coli O157:H7. Mol. Microbiol 93, 199–211 (2014).

63. Abernathy, J., Corkill, C., Hinojosa, C., Li, X. & Zhou, H. Deletions in the
pyruvate pathway of Salmonella Typhimurium alter SPI1-mediated gene
expression and infectivity. J. Anim. Sci. Biotechnol. 4, 5 (2013).

64. Martinez, J. L. & Baquero, F. Interactions among strategies associated with
bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin.
Microbiol Rev. 15, 647–679 (2002).

65. Rauscher, B. et al. Toward an integrated map of genetic interactions in cancer
cells. Mol. Syst. Biol. 14, e7656 (2018).

66. Baric, R. S., Crosson, S., Damania, B., Miller, S. I. & Rubin, E. J. Next-
generation high-throughput functional annotation of microbial genomes.
mBio 7 (2016).

67. Miravet-Verde, S., Llorens-Rico, V. & Serrano, L. Alternative transcriptional
regulation in genome-reduced bacteria. Curr. Opin. Microbiol. 39, 89–95
(2017).

68. Zitnik, M. et al. Machine Learning for Integrating Data in Biology and
Medicine: Principles, Practice, and Opportunities. Inf. Fusion 50, 71–91
(2019).

69. Robinson, M. D. & Oshlack, A. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

70. Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of
multivariate data using Principal Component Analysis and heatmap. Nucleic
Acids Res. 43, W566–W570 (2015).

71. Avican, K., et al. RNA atlas of human bacterial pathogens uncovers stress
dynamics linked to infection, pathogenex-scores, https://doi.org/10.5281/
zenodo.4708491, 2021.

Acknowledgements
We are grateful to all the expert labs for opening their lab to us and help with bacterial
culturing and stress exposure experiments. We thank Drs. Peter Lind, Teresa Frisan, and
Saskia Erttmann for critical reading of the manuscript. The work was supported by Knut
and Alice Wallenberg Foundation (No. 2016.0063), Swedish Research Council (No.
2018-02855), and Insamlingsstiftelsen, Medical Faculty at Umeå University to M

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23588-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3282 | https://doi.org/10.1038/s41467-021-23588-w |www.nature.com/naturecommunications 13

https://doi.org/10.5281/zenodo.4708491,
https://doi.org/10.5281/zenodo.4708491,
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fallman; Novo Nordisk Foundation (K. Avican was partly supported by Grant No.
NNF17OC0026486, awarded to Dr. Emmanuelle Charpentier at MIMS, The Laboratory
for Molecular Infection Medicine Sweden); ERC (Starting grant, No. 716063) to J. Tang;
Academy of Finland Research Fellow Grant (No. 317680) to J. Aldahdooh.

Author contributions
K.A. and M.F. conceived and supervised the project, and wrote the manuscript with input
from J.A, M.T., F.M., J.T., K.B., and M.R. K.A. performed the experiments and analyzed
the data. M.T., K.B., K.A, and M.F. designed and M.T. calculated PTDEX scores. J.A., J.T.,
K.A., and M.F. designed and J.A. constructed the PATHOgenex RNA atlas and webpage.

Funding
Open access funding provided by Umea University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23588-w.

Correspondence and requests for materials should be addressed to K.A. or M.F.

Peer review information Nature Communications thanks Anaïs Le Rhun, Jonathan
Livny, and the other, anonymous, reviewer for their contribution to the peer review of
this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23588-w

14 NATURE COMMUNICATIONS |         (2021) 12:3282 | https://doi.org/10.1038/s41467-021-23588-w |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-23588-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection
	Results
	Cataloging stress response of cross-microbial human pathogens
	Clustering genes into gene groups for cross microbial comparisons
	Revealing probability of gene groups to be differentially expressed
	Comparisons of stress responses between evolutionary distinct bacterial groups
	Identification of intersections between stress responses
	Revealing universal stress responders including known antimicrobial targets
	Stress responses identified in PATHOgenex are relevant for infection in�vivo
	ncRNAs in bacterial stress responses
	The PATHOgenex RNA atlas provides opportunities for exploring gene expression in human pathogens

	Discussion
	Methods
	Bacterial growth and stress exposures
	Total RNA isolation
	RNA-seq library preparation with RNAtag-Seq
	RNA-seq data analysis
	Comparisons of in�vivo differentially regulated genes of S. aureus and P. aeruginosa to in�vitro stress responses
	Generation of a phylogenetic tree of 32�strains
	Clustering 32�strains based on expression profiles
	Clustering 105,088 genes with orthology/homology
	PTDEX score calculation
	Generation of co-expression modules and KEGG pathway enrichments
	PATHOgenex website construction

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




